Molecular chaperones stimulate the functional expression of the cocaine-sensitive serotonin transporter.
نویسندگان
چکیده
The serotonin transporter (SERT) is an N-glycosylated integral membrane protein that is predicted to contain 12 transmembrane regions. SERT is the major binding site in the brain for antidepressant drugs, and it also binds amphetamines and cocaine. The ability of various molecular chaperones to interact with a tagged version of SERT (Myc-SERT) was investigated using the baculovirus expression system. Overexpression of Myc-SERT using the baculovirus system led to substantial quantities of inactive transporter, together with small amounts of fully active and, therefore, correctly folded molecules. The high levels of inactive Myc-SERT probably arose because folding was rate-limiting due, perhaps, to insufficient molecular chaperones. Therefore, Myc-SERT was co-expressed with the endoplasmic reticulum (ER) molecular chaperones calnexin, calreticulin and immunoglobulin heavy chain binding protein (BiP), and the foldase, ERp57. The expression of functional Myc-SERT, as determined by an inhibitor binding assay, was enhanced nearly 3-fold by co-expressing calnexin, and to a lesser degree on co-expression of calreticulin and BiP. Co-expression of ERp57 did not increase the functional expression of Myc-SERT. A physical interaction between Myc-SERT-calnexin and Myc-SERT-calreticulin was demonstrated by co-immunoprecipitation. These associations were inhibited in vivo by deoxynojirimycin, an inhibitor of N-glycan precusor trimming that is known to prevent the calnexin/calreticulin-N-glycan interaction. Functional expression of the unglycosylated SERT mutant, SERT-QQ, was also increased on co-expression of calnexin, suggesting that the interaction between calnexin and SERT is not entirely dictated by the N-glycan. SERT is the first member of the neurotransmitter transporter family whose folding has been shown to be assisted by the molecular chaperones calnexin, calreticulin, and BiP.
منابع مشابه
Expression analysis of K+ transporter genes associated with salinity tolerance in grape
Molecular information of K+ accumulation in grapes is strongly required. Under salinity condition potassium transporters are inhibited by Na+. The aim of this study was to investigate the effects of salinity on the expression of K+ transporter genes in grape. Based on the previous screening study on 18 grape genotypes, ‘H6’ and ‘Gharashani’ (tolerant) and ‘Shirazi’ and ‘GhezelUzum’ (sensitive) ...
متن کاملThe antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines.
Extracellular concentrations of monoamine neurotransmitters are regulated by a family of high-affinity transporters that are the molecular targets for such psychoactive drugs as cocaine, amphetamines, and therapeutic antidepressants. In Drosophila melanogaster, cocaine-induced behaviors show striking similarities to those induced in vertebrate animal models. Although a cocaine-sensitive seroton...
متن کاملAntidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization.
A Na(+)- and Cl(-)-coupled serotonin (5-hydroxytryptamine, 5HT) transporter is expressed on human neuronal, platelet, placental, and pulmonary membranes. The brain 5HT transporter appears to be a principal site of action of therapeutic antidepressants and may mediate behavioral and/or toxic effects of cocaine and amphetamines. Oligonucleotides derived from consensus transporter sequences were u...
متن کاملBiogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux.
LLC-PK1 cells have been stably transfected with cDNAs encoding the human norepinephrine transporter (NET), rat dopamine transporter (DAT), and rat serotonin transporter. Using these cell lines, the specificity of each transporter toward agents that inhibit substrate influx and stimulate substrate efflux across the plasma membrane was examined. With 1-methyl-4-phenylpyridinium as a substrate for...
متن کاملA human serotonin transporter mutation causes constitutive activation of transport activity.
A rarely occurring variant of human serotonin transporter (hSERT) was tested for its functional consequences in HeLa and COS-7 cells. The variant, in which Ile-425 is converted to Val, was significantly different from wild type with respect to its catalytic properties. In both cell types, rates of serotonin (5-HT) transport were higher for the I425V variant. Both an increase in Vmax and a decre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 274 25 شماره
صفحات -
تاریخ انتشار 1999